
ECE 558 HW2 Arpad Voros

1. Consider the two image subsets S1 and S2. For V = {1}, determine whether these two
subsets are 4-adjacent, 8-adjacent, and m-adjacent. Show justification in detail.

The sets are shown in the HW instructions.

(a) Sets S1 and S2 are not 4-adjacent due to no shared elements of V perpendicular
to one another.

(b) Sets S1 and S2 are 8-adjacent due to elements of V being in diagonal neighborhoods
of one another.

(c) Sets S1 and S2 are not m-adjacent since no conditions apply for m-adjacency to
occur (4 adjacent OR 6∈ V , in diagonal neighborhood, and have common 4-adjacent
neighbors)

2. Provide a single, composite transformation functions for performing the following opera-
tions

(a) Scaling → translation

Any linear transformation on pairs of variables can be represented as a linear com-
bination of said variables to some result. This is known as a linear mapping, where[

x
y

]
L′−→
[
u
v

]
(1)

where x and u correspond to the horizontal axes of the image while y and v corre-
spond to the vertical axes of the image (this is evident when defining vertical/hori-
zonal shear). However, it is known that some linear transformations (such as trans-
lations) require constants, so they are not purely linear combinations. Because of
this, we can include a unit scalar as well as an additional term post transformation
which results in xy

1

 L−→

uv
w

 (2)

in order to scale, our transformation Ls can be represented as a matrix of values
which result in such a system of equations such that

αxx = u

αyy = v

Therefore

Ls(m) = Sm =

αx 0 0
0 αy 0
0 0 1

m (3)

As for translations, our transformation Lt can be represented as a matrix of values
which result in such a system of equations such that

x+ δx = u

y + δy = v

Therefore

Lt(m) = Tm =

1 0 δx
0 1 δy
0 0 1

m (4)

1

ECE 558 HW2 Arpad Voros

Together, performing a scaling transformation followed by a translation results in

Lt(Ls(m)) = Lst(m) = TSm =

1 0 δx
0 1 δy
0 0 1

αx 0 0
0 αy 0
0 0 1

m (5)

The two transformations can be combined into a composite matrix by calculating
TS, is

TS =

αx 0 δx
0 αy δy
0 0 1

 (6)

(b) Scaling → translation → rotation

Using the logic built up in the previous method, we can define a rotation transfor-
mation Lr and then simply append it to the total list of transformations. I am not
going to derive the transformation matrix for rotation, but the mapping is as follows
(for a counter-clockwise rotation)

x cos(θ)− y sin(θ) = u

x sin(θ) + y cos(θ) = v

Therefore

Lr(m) = Rm =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

m (7)

So that

Lstr(m) = RTSm =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

αx 0 δx
0 αy δy
0 0 1

m (8)

Where the single composite matrix RTS is

RTS =

αx cos(θ) −αy sin(θ) δx cos(θ)− δy sin(θ)
αx sin(θ) αy cos(θ) δx sin(θ) + δy cos(θ)

0 0 1

 (9)

(c) Vertical shear → scaling → translation → rotation

Using the logic built up in the previous methods, we can define a vertical shear
transformation Lv and then simply append it to the total list of transformations. A
vertical shear is described as distorting the image in the vertical (y) direction w.r.t.
a scalar multiple the other dimensions (in this case only horizontal, x). Therefore
the mapping is as follows

x = u

y + γyx = v

Therefore

Lv(m) = V m =

 1 0 0
γy 1 0
0 0 1

m (10)

2

ECE 558 HW2 Arpad Voros

So that

Lvstr(m) = RTSVm =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

αx 0 δx
0 αy δy
0 0 1

 1 0 0
γy 1 0
0 0 1

m (11)

Where the single composite matrix RTSV is

RTSV =

αx cos(θ)− αyγy sin(θ) −αy sin(θ) δx cos(θ)− δy sin(θ)
αx sin(θ) + αyγy cos(θ) αy cos(θ) δx sin(θ) + δy cos(θ)

0 0 1

 (12)

(d) Does the order of multiplication of the individual matrices to produce a single trans-
formation make a difference? Give an example based on a scaling/translation trans-
formation to support your answer

Order of multiplication does matter. As seen above, the order of which the trans-
formations are applied, the matrices are listed in a reverse order left-to-right. This
is because the first transformation applied must be next to the coordinate system
vector m, and so on and so forth.

Intuitively, if some image was first scaled, then translated, the system of equations
would result in

(αxx) + δx = u

(αyy) + δy = v

Which results in

Lst(m) = TSm =

1 0 δx
0 1 δy
0 0 1

αx 0 0
0 αy 0
0 0 1

m =

αx 0 δx
0 αy δy
0 0 1

m (13)

Again, if some image was first translated, then scaled, the system of equations would
result in

αx(x+ δx) = u

αy(y + δy) = v

Which can clearly be seen, that now the translation has ALSO been scaled. This is
because each successive transformation is w.r.t. the altered mapping (u, v) invoked
by the previous transformations, and not the original map (x, y). This is shown here

Lts(m) = STm =

αx 0 0
0 αy 0
0 0 1

1 0 δx
0 1 δy
0 0 1

m =

αx 0 αxδx
0 αy αyδy
0 0 1

m (14)

It is clear that Lst(m) 6= Lts(m) because TS 6= ST , meaning that the order of the
matrices matters when performing transformations.

3. An experiment in particle physics is set up with an imaging system whose (processed)
output consists of two types of images. Images of Type I have at least one particle collision
present, while images of Type II are ’blank’ (i.e. they contain no particle collisions). The
images are stored sequentially, as they come out of the experiment. The occurrence of
collisions is random, and it is known that the bank images occur 80% of the time. In a
particular run, the experiment generates 1000 images

3

ECE 558 HW2 Arpad Voros

(a) What is the probability that if we look at the first three images they would all be of
Type I?

It was externally given that the imaging of these particle collisions are i.i.d. There-
fore, the number of images as well as any order of the images is irrelevant. Rather,
the only thing that’s affected is the number of times Type I or II occurrences can
happen sequentially. A Type I occurrence happens 20% of the time, therefore for
the first 3 images to be Type I would simply be (0.2)3 or 0.08%

(b) Will the result be different if we look at the last three images?

Since the imaging of these particles is i.i.d., the result will not be different when
looking at the last three images.

4. Give a single intensity transformation function for spreading the intensities of an image
so the lowest intensity is 0 and the highest is L− 1 (e.g. L = 100)

(a) Derive the transformation function

i. Method I: Simple Transformation

Let’s take the simplest possible example and use a 2-pixel image. For a 2-pixel
greyscale image I where I = [p1, p2], we know that there is some transformation
T where T (I) = [0, L− 1] or T (I) = [L− 1, 0]. We know that

min (I)
T−→ 0

and
max (I)

T−→ L− 1

This can simply be done by removing an offset to decrease the lower-bound of
I to 0. The range of I changes from [min(I), max(I)] to [0, max(I) −min(I)].
Then, we simply have to scale it so that the upper-bound equals L − 1, so
we simply multiply it by the L − 1 and the reciprocal of the current quantity.
Therefore the overall transformation function for any image I where I ∈ Rn×m

is given by

T (I) =
(I −min(I)) (L− 1)

max(I)−min(I)
(15)

This simply takes the distribution, shifts it down to the minimum, and stretches
it until L − 1 is reached. Therefore, is no change in the shape/envelope of the
distribution. More can be seen in the images below.

ii. Method II: Histogram Equalization

In order to achieve histogram-equalization, we must have a change in variables
using some transformation function T . Let us say we are transforming the
probability density function of pixels S to a new PDF R. We can define this as

S
T−→ R, S = T (R) (16)

where S and R are random variables. We can note that the resulting equalized
histogram should be defined as a uniform distribution with PDF

S ∼ U [0, L− 1], pS(s) =

{
1

(L−1) , 0 ≤ s ≤ L− 1

0, otherwise
(17)

4

ECE 558 HW2 Arpad Voros

Therefore, we can easily relate the ranges of S and R

0 ≤ S ≤ s⇐⇒ 0 ≤ R ≤ T−1(s) (18)

and define equivalence using their PDFs as such∫ s

0

pS(σ)dσ =

∫ T−1(s)

0

pR(ρ)dρ (19)

If we differentiate both sides w.r.t. s, then LHS becomes

d

ds

∫ s

0

pS(σ)dσ = pS(s) (20)

and RHS becomes

d

ds

∫ T−1(s)

0

pR(ρ)dρ =
d

ds
PR(T−1(s)) (21)

therefore

pS(s) =
d

ds
PR(T−1(s)) (22)

Using the chain rule on the RHS, we get

pS(s) = P ′R(T−1(s))
dT−1(s)

ds
(23)

and since T−1(s) equals r, then

pS(s) = pR(r)
dr

ds
(24)

We know that pS(s) = 1
L−1 given its range, so we can rearrange the equation

above to get
ds

dr
= (L− 1)pR(r) (25)

integrate both sides w.r.t. r to get the final result

s =

∫ r

0

(L− 1)pR(ρ)dρ (26)

Discretely, this is equivalent to

si,j = (L− 1)

ni,j∑
n=0

pR(n) (27)

where

pR(n) =

∑K
k=0 1n=k

M
, where 1z =

{
1, if z is true

0, if z is false
(28)

where i and j indicate indices of the image, n is the intensity of a pixel, K is
the count of pixels w.r.t. intensity, and M is the total number of pixels within
the image.

5

ECE 558 HW2 Arpad Voros

(b) Check your derived function by writing code and test the code on the provided lena.png

image (convert to grayscale using the built-in functions)

022 055 089 122 155 188 222 255

Figure 1: Method I & Method II: lena.png with the various L− 1 values and histograms

L−1 ∈ [0, 255] because these are uint8. The top row correspond to Method I and the
bottom row to Method II. As it can be observed, Method 1 preserves the distribution
while shifting and stretching it. Method II creates a uniform distribution, which can
clearly be seen by the linear red line that is the calculated CDF. The listing for the
script can be found at the appendix at the end.

5. Obtain the un-normalized and the normalized histograms of the following 8-bit, M × N
image. Given your histogram either in a table or a graph, labeling clearly the value and
the location of each histogram component in terms of M and N .

If the top left of the figure is (0, 0) and the downward direction corresponds to M and
the rightward direction corresponds to N , then the bottom left corner is (M,N). Then,
we can find the points which bound each area in terms of M and N

bounds value area %area
(0.25M, 0.75N), (0.5M, 0.5N), (0.5M,N), (M, 0.5N), (M,N) 0 5 0.3125

(0M, 0.25N), (0M, 0.5N), (0.75M, 0.25N), (0.75M, 0.5N) 16 3 0.1875
(0M, 0.5N), (0M,N), (0.25M, 0.75N) 32 1 0.0625

(0.75M, 0N), (0.75M, 0.25N), (M, 0N), (M, 0.25N) 127 1 0.0625
(0.75M, 0.25N), (0.75M, 0.5N), (M, 0.25N), (M, 0.5N) 191 1 0.0625

(0M, 0.5N), (0.25M, 0.75N), (0.5M, 0.5N) 228 1 0.0625
(0M, 0N), (0M, 0.25N), (0.75M, 0N), (0.75M, 0.25N) 240 3 0.1875

(0M,N), (0.25M, 0.75N), (0.5M,N) 255 1 0.0625

Table 1: Unnormalized & Normalized Histogram in table format

Where all values in the %area correspond to the normalized histogram; column sums to 1.

6

ECE 558 HW2 Arpad Voros

6. Assume continuous intensity values, and suppose that the intensity values of an image
have the following PDF (probability density function)

pR(r) =

{
2r

(L−1)2 , 0 ≤ r ≤ L− 1

0, otherwise
(29)

(a) Find the transformation function that will map the input intensity value r into values
s of a histogram-equalized image

We derived histogram-equalization in Equation 26, so substituting pR(r) with the
value in Equation 29, we get

s =

∫ r

0

(L− 1)
2ρ

(L− 1)2
dρ (30)

s =
2

L− 1

[
ρ2

2

]r
0

=
r2

L− 1
(31)

i. Monte-Carlo Simulation
For confirmation, a Monte-Carlo simulation was performed. An image is ran-
domly populated pixels which follow the PDF given in Equation 29. The MAT-
LAB function histeq is used to equalize the histogram of the image, and it is
compared to the simple transformation derived in Equation 31. In these simu-
lations, L − 1 is always 255. As you can see in the figures below, the PDF is
linear and the histogram shows it. We compare the figure and histogram of the
discrete histogram-equalization algorithm (built-in to MATLAB, histeq) with
the figure and histogram of the transformation defined in Equation 31.

(b) Find the transformation function that (when applied to the histogram-equalized in-
tensity values, s), will produce an image whose intensity PDF is given by

pZ(z) =

{
3z2

(L−1)3 , 0 ≤ z ≤ L− 1

0, otherwise
(32)

Similarly to part (a), we can substitute the value of pR(r) from Equation 26 with
the value given in Equation 32 to get

s =

∫ z

0

(L− 1)
3ρ2

(L− 1)3
dρ (33)

s =
3

(L− 1)2

[
ρ3

3

]z
0

=
z3

(L− 1)2
(34)

i. Monte-Carlo Simulation
Again, for confirmation, a Monte-Carlo simulation was performed. An image is
randomly populated pixels which follow the PDF given in Equation 32, using
similar methods to the previous simulation. The results are shown below. As it
can be observed, compared to the previous simulation the new PDF is non-linear,
and the histogram confirms this

7

ECE 558 HW2 Arpad Voros

Default PDF and Histogram

Histogram-equalization using transformation function defined in Equation 31

Histogram-equalization built-in MATLAB function histeq

Figure 2: Monte-Carlo simulations using intensities PDF is 2r
(L−1)2 (Equation 29)

8

ECE 558 HW2 Arpad Voros

Default PDF and Histogram

Histogram-equalization using transformation function defined in Equation 34

Histogram-equalization built-in MATLAB function histeq

Figure 3: Monte-Carlo simulations using intensities PDF is 3z2

(L−1)3 (Equation 32)

9

ECE 558 HW2 Arpad Voros

(c) Express the transformation function from (b) directly in terms of r, the intensities
of the output image.

To go from one domain to the other, we use the uniform distribution (where s is
a uniformly distributed PDF) as a medium of transformation. Therefore we can
simply set the two results to one another as such

z3

(L− 1)2
= s =

r2

L− 1
(35)

and then solve for z to get
z = 3

√
r2(L− 1) (36)

1 Appendix

1 import matplotlib

2 import matplotlib.pyplot as plt

3 from matplotlib.axes import Axes

4

5 import numpy as np

6

7 from PIL import Image , ImageOps

8 from skimage import exposure

9 from skimage import img_as_float

10

11 # modified from https :// scikit -image.org/docs/dev/ auto_examples /...

12 # ... color_exposure / plot_log_gamma .html

13 # further modified from Dr. Tianfu Wu - NC State University - ECE 558

14 def plot_hist_cdf(image: np.ndarray , axes: Axes , bins=256) -> (Axes , ...
Axes , Axes):

15 """ Plot an image along with its histogram and cumulative histogram .

16 image: a float image """

17 ax_hist = axes

18 ax_cdf = ax_hist.twinx()

19

20 # skimage get image as float

21 image = img_as_float(image)

22

23 # Display histogram

24 ax_hist.hist(image.ravel(), bins=bins , histtype='step', color='black ')
25 ax_hist.set_xlim(0, 1)

26 ax_hist.set_xticks([])

27 ax_hist.set_yticks([])

28

29 # Display cumulative distribution

30 img_cdf , bins = exposure.cumulative_distribution(image , bins)

31 ax_cdf.plot(bins , img_cdf , 'r')
32 ax_cdf.set_xticks([])

33 ax_cdf.set_yticks([])

34

35 return ax_hist , ax_cdf

36

37 # ===

38

39 # get the lena image

40 folder_dir = 'C:/Users/Arpad/Documents/Academic/NCSU/E. NCSU Grad Sem ...
1/ECE 558/HW02/'

10

ECE 558 HW2 Arpad Voros

41 img_dir = folder_dir + 'hw2/lena.tiff'
42

43 # greyscale

44 img = np.array(ImageOps.grayscale(Image.open(img_dir)), dtype=np.float32)

45

46 # image shape

47 num_row , num_col = np.shape(img)

48

49 # min and max pixel values

50 v_max = np.max(img)

51 v_min = np.min(img)

52

53 # uint8 range

54 uint8_min = 0

55 uint8_max = 255

56

57 # # variable number for L - 1

58 # num_show = 24

59 # L = np.linspace(uint8_min + 1, uint8_max + 1, num=num_show)

60

61 # values used in example for HW

62 L = np.array([22, 55, 89, 122 , 155 , 188 , 222 , 255]) + 1

63

64 # cumulative count + scale , used in histogram equalization

65 cum_count = np.zeros([uint8_max + 1])

66 for v in range(uint8_max + 1):

67 if not v:

68 cum_count[v] = np.sum(img == v)

69 else:

70 cum_count[v] = cum_count[v - 1] + np.sum(img == v)

71 cum_count /= (num_row * num_col)

72

73 # plot each result

74 for l in L:

75 # simple transformation (METHOD I)

76 timg = np.copy(img)

77 ratio = (l - 1) / (v_max - v_min)

78 timg -= v_min

79 timg *= ratio

80 timg = np.uint8(timg)

81

82 # ==

83 # PLOTTING LENA WITH HISTOGRAM (METHOD I)

84

85 fig , plts = plt.subplots(2, 1, tight_layout=True , figsize=(4, 7.78))

86 plts[1].set_box_aspect ()

87 ax_hist , ax_cdf = plot_hist_cdf(timg , plts[1])

88 # image part

89 plts[0].set_xticks([])

90 plts[0].set_yticks([])

91 plts[0].imshow(timg , cmap="gray", vmin=uint8_min , vmax=uint8_max)

92 fig.tight_layout ()

93

94 # # SAVE LENA WITH HISTOGRAM FIGURE

95 # fig.savefig(folder_dir + 'hw2/' + str(round(l - 1)) + ...
'lena_and_hist .png ')

96 #

97 # # ==

98 # # PLOTTING HISTOGRAM ONLY (METHOD I)

99 #

100 # hist_fig , hist_plts = plt.subplots(1, 1, tight_layout =True , ...
figsize =(8, 8))

11

ECE 558 HW2 Arpad Voros

101 # ax_hist , ax_cdf = plot_hist_cdf (timg , hist_plts)

102 # hist_fig. tight_layout ()

103 #

104 # # SAVE HISTOGRAM ONLY FIGURE

105 # hist_fig.savefig(folder_dir + 'hw2/' + str(round(l - 1)) + 'hist.png ')
106 #

107 # # ==

108 # SAVE LENA ONLY IMAGE (METHOD I)

109 #

110 # Image.fromarray (np.uint8(timg)).save(folder_dir + 'hw2/' + ...
str(round(l - 1)) + ...
'lena_max.png ')

111 #

112 # # ==

113 # # ==

114 # # ==

115 # histogram equalization transformation (METHOD II)

116 ttimg = np.copy(img)

117 for v in range(uint8_max + 1):

118 ttimg[(img == v)] = (l - 1) * cum_count[v]

119 ttimg = np.uint8(ttimg)

120 # ==

121 # PLOTTING LENA WITH HISTOGRAM (METHOD II)

122

123 fig , plts = plt.subplots(2, 1, tight_layout=True , figsize=(4, 7.78))

124 plts[1].set_box_aspect ()

125 ax_hist , ax_cdf = plot_hist_cdf(ttimg , plts[1])

126 # image part

127 plts[0].set_xticks([])

128 plts[0].set_yticks([])

129 plts[0].imshow(ttimg , cmap="gray", vmin=uint8_min , vmax=uint8_max)

130 fig.tight_layout ()

131

132 # # SAVE LENA WITH HISTOGRAM FIGURE

133 # fig.savefig(folder_dir + 'hw2/eq_' + str(round(l - 1)) + ...
'lena_and_hist .png ')

134 #

135 # # ==

136 # # PLOTTING HISTOGRAM ONLY (METHOD II)

137 #

138 # hist_fig , hist_plts = plt.subplots(1, 1, tight_layout =True , ...
figsize =(8, 8))

139 # ax_hist , ax_cdf = plot_hist_cdf (ttimg , hist_plts)

140 # hist_fig. tight_layout ()

141 #

142 # # SAVE HISTOGRAM ONLY FIGURE

143 # hist_fig.savefig(folder_dir + 'hw2/eq_' + str(round(l - 1)) + ...
'hist.png ')

144 #

145 # # ==

146 # # SAVE LENA ONLY IMAGE (METHOD II)

147 #

148 # Image.fromarray (np.uint8(ttimg)).save(folder_dir + 'hw2/eq_' + ...
str(round(l - 1)) + ...
'lena_max.png ')

149 #

150 # # ==

151 # # ==

152

153 # show the plot

154 plt.show()

12

ECE 558 HW2 Arpad Voros

Monte-Carlo Listing. Just for reference, otherwise ignore

1 %% monte carlo image
2 uint8 max = 255;
3 uint8 min = 0;
4

5 L = uint8 max + 1;
6 %%
7 r res = 1;
8

9 r = (uint8 min + 1):r res:(L − 1);
10

11 % r distribution, linear pdf
12 % pdf = (2 * r) / ((L − 1) ˆ 2);
13 % pdf = [r', pdf'];
14

15 % z distribution, non−linear pdf
16 z = r;
17 pdf = (3 * (z.ˆ2)) / ((L − 1) ˆ 3);
18 pdf = [z', pdf'];
19

20 cdf = cumsum(pdf(:, 2));
21

22 %% lena
23 img = double(rgb2gray(imread("C:\Users\Arpad\Documents\Academic\NCSU\E. NCSU ...

Grad Sem 1\ECE 558\HW02\hw2\lena.tiff")));
24 img size = size(img);
25 img size = img size(1);
26 total pix = img size * img size;
27

28 %% random trials
29 img size = 512;
30 total pix = img size * img size;
31

32 trials = rand(total pix, 1);
33 p = @(r) find(r < cdf, 1, 'first');
34

35 res = arrayfun(p, trials);
36 % histogram(res, 1:256);
37

38 img = reshape(res, img size, img size);
39 imshow(img, [uint8 min − 1, uint8 max − 1]);
40

41 %% hist eq
42 uint8 range = uint8 min:uint8 max;
43 maxv = max(img, [], 'all');
44 count pix cdf = zeros(size(uint8 range));
45

46 imgT = zeros(size(img));
47

48 idx = 1;
49 for v = uint8 range
50 img bool = (img == v);
51 if idx == 1
52 count pix cdf(idx) = sum(img bool, 'all');
53 else
54 count pix cdf(idx) = count pix cdf(idx − 1) + sum(img bool, 'all');
55 end
56 imgT(img bool) = floor((L − 1) * (count pix cdf(idx) / total pix));
57 idx = idx + 1;
58 end

13

ECE 558 HW2 Arpad Voros

59

60 %% own transform
61 % % for pdf = 2r/(L−1)ˆ2
62 % imgTT = round((img .ˆ 2) ./ (L − 1));
63

64 % for pdf = 3(zˆ2)/(L−1)ˆ3
65 imgTT = round((img .ˆ 3) ./ ((L − 1) ˆ 2));
66

67 %% matlab hist eq
68 imgMT = round(histeq(img ./ uint8 max, uint8 max + 1) * uint8 max);
69

70 %%
71 f = figure(1);
72 imshow(img, [uint8 min − 1, uint8 max − 1]);
73 % title({sprintf("Simulated %d x %d image (N = %d), intensities %d to %d", ...

img size, img size, total pix, uint8 min, uint8 max), ...
74 % sprintf("Intensities PDF = $\\frac{2r}{(L − 1)ˆ{2}}$ from $0 ...

\\rightarrow (L − 1)$")}, 'interpreter', 'latex');
75

76 f = figure(2);
77 imshow(imgMT, [uint8 min − 1, uint8 max − 1]);
78 % title({sprintf("Histogram−equalization applied, using $\\textbf{histeq}$"), ...
79 % sprintf("Intensities PDF = $\\frac{2r}{(L − 1)ˆ{2}}$ from $0 ...

\\rightarrow (L − 1)$")}, 'interpreter', 'latex');
80

81 % figure(3);
82 % imshow(imgT, [uint8 min − 1, uint8 max − 1]);
83

84 f = figure(4);
85 imshow(imgTT, [uint8 min − 1, uint8 max − 1]);
86 % title({sprintf("Histogram−equalization applied, using derived transformation ...

$s = \\frac{rˆ{2}}{L − 1}$"), ...
87 % sprintf("Intensities PDF = $\\frac{2r}{(L − 1)ˆ{2}}$ from $0 ...

\\rightarrow (L − 1)$")}, 'interpreter', 'latex');
88

89 bins range = 1:(uint8 max + 1);
90

91 f = figure(5);
92 histogram(reshape(img, total pix, 1), bins range);
93 % title(sprintf("Intensities PDF = $\\frac{2r}{(L − 1)ˆ{2}} \\longrightarrow$...

default − Histogram view"), 'interpreter', 'latex');
94

95 f = figure(6);
96 histogram(reshape(imgMT, total pix, 1), bins range);
97 % title(sprintf("Intensities PDF = $\\frac{2r}{(L − 1)ˆ{2}} \\longrightarrow ...

\\textbf{histeq}$ − Histogram view"), 'interpreter', 'latex');
98

99 % figure(7);
100 % histogram(reshape(imgT, total pix, 1), bins range);
101

102 f = figure(8);
103 histogram(reshape(imgTT, total pix, 1), bins range);
104 % title(sprintf("Intensities PDF = $\\frac{2r}{(L − 1)ˆ{2}} \\longrightarrow ...

\\frac{rˆ{2}}{L − 1}$ − Histogram view"), 'interpreter', 'latex');

14

